Reconfiguring convex polygons
نویسندگان
چکیده
منابع مشابه
Dissections of Polygons into Convex Polygons
In the paper we present purely combinatorial conditions that allow us to recognize the topological equivalence (or non-equivalence) of two given dissections. Using a computer program based on this result, we are able to generate a set which contains all topologically non-equivalent dissections of a p0-gon into convex pi-gons, i = 1, ..., n, where n, p0, ..., pn are integers such that n ≥ 2, pi ...
متن کاملConvexity of Sub-polygons of Convex Polygons
A convex polygon is defined as a sequence (V0, . . . , Vn−1) of points on a plane such that the union of the edges [V0, V1], . . . , [Vn−2, Vn−1], [Vn−1, V0] coincides with the boundary of the convex hull of the set of vertices {V0, . . . , Vn−1}. It is proved that all sub-polygons of any convex polygon with distinct vertices are convex. It is also proved that, if all sub-(n − 1)-gons of an n-g...
متن کاملOn k-convex polygons
We introduce a notion of k-convexity and explore polygons in the plane that have this property. Polygons which are k-convex can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of 2-convex polygons, a particularly interesting class, and show how to recognize them in O(n log n) time. A description of their sh...
متن کاملTilings of convex polygons
© Annales de l’institut Fourier, 1997, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOn convex lattice polygons
Let II be a convex lattice polygon with b boundary points and c (5 1) interior points. We show that for any given a , the number b satisfies b 5 2e + 7 , and identify the polygons for which equality holds. A lattice polygon II is a simple polygon whose vertices are points of the integral lattice. We let A = 4(11) denote the area of II , b{U) the number of lattice points on the boundary of II , ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geometry
سال: 2001
ISSN: 0925-7721
DOI: 10.1016/s0925-7721(01)00037-2